
JournalofGlobal Optimization 6: 87-105, 1995. 87
�9 1995 KluwerAcademic Publishers. Printed in the Netherlands.

A Method for Solving D.C. Programming Problems.
Application to Fuel Mixture Nonconvex
Optimization Problem

THAI Q U Y N H PHONG, PHAM DINH TAO and LE THI HOAI AN
LMI-INSA Rouen, CNRS, URA 1378, B.P 08, 76131, Mt St Aignan Cedex, France

(Received: 10 July 1992; accepted: 2 August 1994)

Abstract. We present a numerical method for solving the d.c. programming problem

c* =min{(c,x) s.t. f i (x) <_0, i = l m, x E D}

where fi i = 1,. . . , m are d.c. (difference of two convex functions) and D is a convex set in R n. An
(e, 7)-solution x (e, 7) satisfying

x(e,7) E D, (c,x(e,7)) <_ c* +e, f i(x(e,7)) <_ 71, i = 1 m,

can be found after a finite number of iterations. This algorithm combines an outer approximation
procedure for solving a system of d.c. inequalities with a simple general scheme for minimizing a
linear function over a compact set. As an application we discuss the numerical solution of a fuel
mixture problem (encountered in the oil industry).

Key words: Nonlinear programming, global optimization, d.c. programming, outer approximation,
system of d.c. inequalities, (e, 7)-solution, fuel mixture problem.

1. Introduction

In this paper we consider the multiextremal global optimization problem

m in(c, x)
(D C P) s.t. f i (x) <_ O, i = 1 , . . . , r a ,

x E D ,

where f i i = 1 , . . . , ra are d.c. functions (i.e. functions that can be expressed as a
difference of two convex functions) on ~n and D is a compact convex set.

Problem (DCP) is important both from a practical and a theoretical point of
view (see Global Optimization: Deterministic Approaches by Hors t -Tuy [21]).
D.c. functions have begun to be studied since a long time but have been introduced
in optimization only recently, see e.g., the survey in Hiriart-Urruty [13], Tuy
[36]. An important property of this class of functions is its stability with respect
to operations frequently involved in optimization such as taking the pointwise
max imum or pointwise min imum of a finite number of functions, etc. (Tuy [36]).
Examples of d.c. functions often encountered in practice include convex, concave
functions and indefinite quadratic forms.

88 THAI QUYNH PHONG ET AL.

Many economic models give rise to d.c. functions in the objective function as
well as in the constraints (e.g., Hillestad [10], Zalessky [39]). In particular, the
fuel mixture problem (cf. Pham Dinh-E1 Bernoussi [30]) which will be considered
in Section 5 of this paper is of this type. D.c. programming problems are also
encountered in engineering and physics (cf., e.g., Giannessi et al. [9], Nguyen et
al. [26][25], Tuy [36][37], Vigidal-Director [38], Floudas-Visweswaran [7]). An
interesting example of large scale d.c. programming problems is the Multidimen-
sional Scaling problem which has been studied in Chine [5], where the subgradient
method of Pham Dinh Tao was successfully applied (cf. also [29]).

To solve (DCP), we note that, at the expense of an additional variable, this
problem can be transformed into a canonical d.c. program

min(c, x)
(CDCP) s.t. h(x) < 0

g(x) >_ o

where h, g �9 I~ n+l ~]~ are convex functions (cf. [36]). The class of canonical d.c.
programs was studied by many authors (e.g, [1],[2], [8], [12], [11], [19], [30], [27],
[33]). Currently known algorithms for solving (CDCP) are either of branch and
bound (Muu [23]) or outer approximation types (Tuy [35], Tuy and Thuong [34],
Thoai [33]). Algorithms based on outer approximation and cutting plane techniques
were proposed in Pham Dinh-E1 Bemoussi [30]. As noted in Horst et al. [19], the
pure branch and bound or pure outer approximation algorithms are numerically
expensive. For problems of large size, a more promising approach is to combine
branch and bound with outer approximation. A first algorithm of this kind was
developed in Horst-Thoai-Benson [16] for the concave minimization problem;
later this approach was extended to (CDCP) in Horst-Phong-Thoai [19].

In general, finding an exact global solution is computationally expensive. How-
ever, in practice, given e > 0 and r / > 0, we can consider problem (DCP) solved
if a vector x(s, ~/) has been found such that

x(e, rl) ED, (c,x(e,~I))-c* <_e, fi(x(e,~))<W, i = 1 , . . . , m ,

where c* is the optimal value of (DCP). Such a vector will be called an (r ~)-
solution of (DCP).

Our method for finding an (~, ~7)-solution to (DCP) will proceed according to
a dichotomy scheme borrowed from Nghia-Hieu [24]. Namely to determine the
optimal value c* we will start with an interval (70,/30) that is certain to contain c*,
then reduce it by a half from iteration to iteration until we reach an interval enclosing
c* whose length does not exceed e. To see how the interval (Tk,/3k) at iteration k
should be reduced, a subproblem has to be solved to verify whether there is a feasible
solution achieving a function value less than ak = 1/2(/3k + 7k). If such a solution
exists, we s e t / ~ k + l = O~k, ")'k+l = "~k, otherwise we se t /~k+ l = /~k, "~k+l = O~k.

This scheme requires solving at each iteration a system of d.c. inequalities which
are, in general, nondifferentiable. Recently, global methods have been developed

D.C. PROGRAMMING PROBLEM 89

for solving a system of Lipschitzian equations-inequations. A branch and bound
algorithm was proposed in Horst and Thoai [15] while an outer approximation
algorithm was developed in Thach [31]. The method we will present in the sequel
can be considered as an adaptation of Thach's procedure.

In view of the complexity inherent to global optimization, up to now only
problems of reasonable size can be expected to be successfully solved. Fortunately,
the fuel mixture problem belongs to this class, because the number of all possible
components to be considered does not exceed 20. Note that the existing linearization
methods can not generally find a global solution to this highly nonconvex problem.
A first attempt to solve this problem globally was done in Pham Dinh-E1Bemoussi
[30], where the original problem (DCP) was converted into the canonical form. It
tums out that applying our method to the fuel mixture problem enables us to obtain
quite satisfactory numerical results.

The paper is orgainized as follows. First a general scheme for minimizing a
linear function over a compact set is outlined in the next section. The Section 3
presents an outer approximation procedure for solving a system of d.c. inequalities.
Section 4 contains the detailed description of a finite algorithm for finding an (G ~/)-
solution of (DCP). Numerical results for the fuel mixture problem are presented
in Section 5. Finally, a small example is given in the Appendix to illustrate the
algorithm in the general case.

2. Outline of General Dichotomy Scheme

Let us begin with a conceptual scheme for solving the general problem

(P) min(c, z) subject to z E S

where S is a compact convex set given by a system of nonlinear constraints
S = { z E ~ : f~ (z) < 0, i = 1, . . . ,m}. The idea of this scheme is taken from
Nghia-Hieu [24], where it has been originally proposed for solving a canonical
d.c. program.

Let 70, r0 be a lower bound and an upper bound for the optimal value c* of (P).
If z ~ E S is available then set r0 = (c, z~ Otherwise set z ~ = 0.

- Iteration k = 0, 1 , . . .
At the beginning of iteration k we already have lower and upper bounds 7k, flk
forc* andflk = (c , x k) i fx k ~ O.
If flk - 7k _< ~ then stop.
Otherwise, solve the following subproblem, noted (Pk),

check whether the set Dk = { z E S : (c, x) <_ ak } is empty o r n o t and in
the latter case f ind a point x k E Dk.
where ak = 1(ilk + 7k). Two cases can occur:

(i) if Dk is empty then set flk+l = ilk, 7k+l = ak, z k+l = x k and go to
iteration k + 1.

9 0 THAI QUYNH PHONG ET AL.

(ii) ifthereexistsapointS:k C Dkthenset/3k+l = (c,~k),Tk+l = 7 k , X k + i =

:~k and go to iteration k + 1.
The following theorem can be proven exactly as Theorem 2 in [24].

THEOREM 1. The above scheme terminates after at most

k~ = max{O, [log2(M/~)] + 1}

iterations, were M = /30 - 70 and [A] denotes the integral part of A. I f x k # 0
then x k is an e-optimal solution.

As applied to (DCP), the above scheme requires solving at each iteration a sub-
problem (Pk) of the form

x E D , f i (x) < O, i = 1 , . . . , m , (1)

(c,x) _< ~k, (2)

where all fi are d.c. This is itself a very hard problem which cannot be handled by
Newton-type methods using derivatives, gradients, subgradients. Observe, howev-
er, that (Pk) differs from (Pk+l) only by the linear constraint (2). So it suggests
choosing for solving the subproblem an algorithm which could employ the infor-
mation obtained in solving (Pk) for the solution of (Pk+ 1). The outer approximation
approach (e.g. [31]) meets this requirement. In the next section, we shall describe
an outer approximation method following the scheme of Thach [31].

3. An Outer Approximation Procedure for Solving a System of d.c.
Inequalities

Let us consider the problem of finding a point x satisfying

f i (x) <_O i = l , . . . , m , (3)

h(x) <_ 0 (4)

where fi are d.c. and D = {x : h(x) <_ 0} is a nonempty, compact convex set.
Obviously, the system (3) is equivalent to the single inequality f (x) <_ 0 where

f (x) = max{ f i (x) : i = 1 , . . . , ra}. Let fi = Pi - ql, where Pi, ql, (i = 1 , . . . , m)
are finite convex functions over]R ~. Following [36] we can write

f (x) = p(x) - q(x)

where

p(x) =
m m

max {pi(x) + ~ qj(x)}, q(x) = ~ q j (x) .
i=l,...,m

j=l j=l
jr

(5)

(6)

D.C. PROGRAMMING PROBLEM 91

Thus, system (3)-(4) is equivalent to the system

x E D, p(x) - q(x) <_ O. (7)

Solving (3)-(4) is now reduced to finding (x, t) E ~1 \~2 where ~1 and f12 are
convex sets in R n x ~ defined by

a l = {(x , t) e a n • ~ : x ~ D , p (x) - t <_ 0},

a2 = { (x , t) e a n • q(x) - t < 0} .

To solve the latter problem according to the outer approximation scheme in
Thach [31], we will construct a nested sequence of polyhedrons

~1 C "'" C Sk C " ' 'S1 C SO

in the following manner. At iteration k we choose a point (x k, tk) E Sk\Q2, if
(x k, tk) E ftl or if Sk\f~2 - (3 we are done, otherwise we construct a hyperplane
strictly separating (x k, tk) from f~2, i.e. a linear inequality Ik(x, t) <_ 0 satisfied by
all (x, t) E f~2 but not by (x k, tk). The next polyhedron is then defined to be

Sk+l = Sk N { (X , t) ' I k (Z ,t) (0}.

Two main points in this scheme are how to choose (x k, tk) and how to construct the
inequalities lk (x k tk) _< 0 in order to ensure convergence. First note that since D
is bounded the polyhedron f~ 1 has just one recession direction, namely the hairline
t _> 0. Therefore we can take So to be a polyhedron with the halfline t _> 0 as
unique recession direction. Then, since ~1 C Sk C S0, the polyhedron Sk, too,
has the halfline t _> 0 as unique recession direction. Let Vk be the vertex set of Sk
and Wk = { (x , t) Vk" t - q(x) < 0} .

LEMMA 1. l f W k = ~ then ~1\~2 = ~ Or, equivalently, (3)-(4) has no solution.
Proof If Wk = Vk\~~2 -~- ~ then Vk C f~2. Since ~'~2 is convex open and has the

same direction of recession as Sk, we have Sk C f~2. Hence fh \ f t2 , i.e. f~l\ft2 = (3
as was to be proved.

If Wk r (3 we will choose (x k, tk) E Wk. In general Wk may contain more
than one element, and (x k, tk) can be chosen in either of the following alternative
ways:

1. x k is the closest point to the solution set (cf. [31]). More specifically, x k E
a rgmin{F(x) : (x, t) e Wk} where F (,) = max{h(,) , f (x)} .

2. (x k, tk) solves the problem
min{t - q (x) : (x, t) E Vk}. (8)

Obviously Wk = (3 is equivalent to min{t - q(x) : (x, t) E Vk} > 0. Thus by
solving (8) we can also verify whether Wk = (3.

92 THAI QUYNH PHONG ET AL.

The above process is in general infinite. Since we are in fact interested in obtaining
an ~-solution, i.e. a point x* such that

x* c D and fi(x*) <_ ~ i = l , . . . , m , (9)

we are led to the following algorithm.

OA PROCEDURE
- Initialization: Let D C A be a simple polytope with known vertex set (for

example, A is a simplex containing D). Take s E A and construct the poly-
hedral convex set

S 0 = { (x , t) : x E A , (y ~ (10)
where yO E Op(s). It is clear that ftl C So. Let Vo be the vertex set of So. Set
k = 0 .

- S t e p k = O , 1, . . .
(i) Construct Wk = {(x, t) C Vk : t - q(x) < 0}. If Wk = 0 then stop: system
(3)-(4) has no solution.
(ii) Find (x k, tk) E argmin{F(x) : (x, t) E Wk} where

F(x) = max{h(x), f (x)} . (11)
(iii) If x k E D and f (x k) < ~ then stop: x k is an ~/-solution. If x k E D solve
the convex programming problem

(Qk) min{ll x k - z lie: z E D}
obtaining z k. If f (z k) < ~ then stop: z k is an ~-solution.
(iv) Let # = max{h(xk) ,p(x ~) - tk} then we have # > 0. In fact, i fh (x k) _<
0, i.e. x k E D then

O < r I < f (x k) = p (x k) - q (x k)<_p(x k) - t k
since tk - q(x k) < O. I f # = h(x k) then set

ll~(x, t) = (yk, x - x k) + h(x k) (12)
with yk E Oh(xk). If # = p(x k) - tk then set

Ik(x, t) = (yk, x - x k) + p(x ~) - t (13)
with yk ~ Op(xk).
(v) Form the new polyhedral convex set

&+l = Sk n {(x, t): l (x, t) _< o}.
Compute the vertex set Vk+l of S~:+1 and go to step k + 1.

COMMENTS
1. in step (ii), we could altematively choose (x k, tk) according to (8). Then the

OA procedure is very similar to the one for solving the concave minimization
problem

min{t - q(x) : x E D,p(x) - t <_ 0}.
2. in step (iii) (Qk) is used to find an approximate solution such that x* E

D, fi(x*) <_ rl. It should be noted that using only linear cuts as introduced in
step (iv), we could only obtain an approximate solution x* such that

h(x*) <_~7, fi(x*) < ~, i = 1 , . . . , m .

D.C. PROGRAMMING PROBLEM 93

If a point w C i n t D is available then instead of solving (Qk) a point z k can be
chosen as the intersection point of the segment [w, x k] with the boundary of D.

THEOREM 2. The OA Procedure terminates after a finite number o f steps either
yielding an ~l-approximate solution (case (ii)-(iii)) o f the system or showing that it
has no solution (case (i)).

Proof. The procedure can be infinite only if step (iv) occurs for all sufficiently
large k. But then the algorithm reduces to a standard outer approximation for the
convex set

m a x { h (x) , p (x) - t} <_ O.

By the convergence theorem in [18], every cluster point (~, t~ of the bounded
sequence {(x k, tk)} satisfies

_< 0, < 0,

i.e. ~ E D, p(:~) - { _< 0. Therefore, for k large enough, p(x k) - tk < ~/2, hence

~/ (14) f (x k) = p(x k) - q(x k) = (p(x k) - tk) + (tk - q(xk)) <_ -~.

Since the algorithm neither stops at step (i) nor step (iii) we must have f (z k) > ~7.
But 2 E D implies that II xk - zk II --+ o, hence, for k large enough, I f (x k) -
f (z k) l< ~//2. This, together with (14), implies f (z k) _< 71, a contradiction.

4. Finite Algorithm for Finding an (e, ~)-Solution of (D C P)

By incorporating the above OA Procedure into the dichotomy scheme described
in Section 2, we obtain the following algorithm for solving (DCP). Let f , p, q be
defined by (5), (6) respectively.

ALG 1
- Initialization: Let D C A be a simple polytype with known vertex set and

s E A. Select c > 0 and 7/> 0. Compute
/30 = m a x { @ , x) ' x E A}, 70 = m i n { (c , x) ' x E A} .

Construct the polyhedral convex set
S o = { (x , t) : x ~ X , (y o , x - s) + p (s) - t < O , }

where Yo E Op(s). Let Vo be the vertex set of So.
If s E D �9 f (s) <_ ~7 set/30 = (c, s} and x ~ = s. Otherwise x ~ = 0. Set
k = 0 .

- Iteration k = 0, 1 , . . .
k.1 If/3k - 7k -< e then stop.
k.2 Otherwise compute the vertex set Vff of the set

((x , t) s k . <

94 THAI QUYNH PHONG ET AL.

where ak = �89 + 7k). Find
wk = {(x , t) e v ~ : t - q(~) < 0}.

k.___33 If Wk = 0 then set
S k + l -~ S k , f l k+l ~- i lk , 7 k + l -~ O~k

and go to iteration k + 1.
k.___44 Otherwise find (x k, tk) E argmhn{F(x) " (x , t) E Wk} where

F(x) = max{h (x) , f (x) } .
k.__._55 If x k E D and f (x k) < ~ then set

-- = x ~ t X k S k + l - 7 - S k , f lk+l @,~ck) , ")'k+ 1 O~k, =

and go to iteration k + 1.
k.6 If x k E D solve the convex program

(Qk) min{I I z - x/c 112: z E D}
obtaining an optimal solution z/c. Two subcases may occur:
(k.6.1) f(z/c) < ~: Set fl/c+l = min{fl/c, (c, z/C)} and let x ~ be the corre-
sponding solution. Set 7/c+1 = 7/c-
(k.6.2) f(z/c) > ~1: Set fl/c+l = ilk, 7k+l = 7 k .

k.__7_7 Let # = max{h(xk), p(x k) - t/c }.
I f # = h(x k) then compute yk E Oh(x k) and set

lk(x , t) = (yk, x - - x k} + h(xk).
If # = p(x k)

lk(x , t)
k.___88 Form the

S k + l :
Compute the

- - t k then compute yk E Op(x k) and set
= (y k , x - x k) + p (x k) - t .

new polyhedral convex set
& n {(x, t): Ik(x, t) < 0).
vertex set Vk+l of Sk+l and go to iteration k + 1.

THEOREM 3. Algorithm ALG 1 terminates after a finite number of iterations
yielding an (e, ~l)-solution of problem (DCP) (provided x ~ ~ 0).

This follows from the finiteness of the dichotomy scheme and of the OA Procedure.

COMMENTS
(i) The computationally most expensive part of the algorithm is the calculation

of vertex sets V~ (step k.2) and Vk+l (step k.8). The problem of finding all
vertices of a polytope that is defined by a finite system of linear inequalities has
been discussed extensively in the literature (e.g., [22]). Some algorithms for
finding Irk+ 1 via the knowledge of Vk have been proposed by Thieu-Tam-Ban
[32], Horst-Thoai-Vries [17], Pham Dinh-E1 Bemoussi [30], Chen-Hansen-
Jaumard [4]. It is worthwhile noting that in our case Sk is a polyhedral convex
set with a special structure, namely with only one extreme direction along the
axis t.

(ii) When D is a polytope defined by the system of linear inequalities
(Ai, x) < bi, i = 1 , . . . , r , (15)

xj > O, j = 1 , . . . , n , (16)

D.C. P R O G R A M M I N G P R O B L E M 95

where Ai E R ~, bi E I~, the algorithm can be simplified. Specifically, for
initialization the set A can be taken to be a simplex

n

A = { z : ~ - ~ x j < _ N , xj>_O, j = l , . . . , n }
j=l

where N = m a x { ~ j xj : x E D} . There is no Step 6, while in Step 7 the cut
is constructed as follows. Let

h (x) = m a x { (A i , x } - b i , i = 1 , . . . , r } .
Then
- i f x k E D and f (x k) > ~ then compute y k E Op(x k) and set

Ik(x , t) = (yk, x - x k) + p (z k) - t,

- if x k E D then select the index ik = argmax{(Ai, x k) - bi, i = 1 , . . . , r}
and set

Ik (x , t) = (d i k , x) - bik.
We will refer to ALG 1 with the above modifications as ALG 2.

5. Application to the Fuel Mixture Nonconvex Optimization Problem

We now discuss the application of d.c. optimization to the fuel mixture problem
encountered in the oil industry. This problem was earlier studied in Pham Dinh-
E1 Bemoussi [30] where some preliminary numerical results were reported. The
method proposed in this paper is to convert the problem into the canonical form,
then solve the canonical d.c. program by outer approximation and cutting plane
technique. It is worthwhile noting that originally the fuel mixture problem is
formulated as (DCP) so it is more convenient to solve it directly by the methods in
the preceding sections.

5.1. FUEL MIXTURE PROBLEM AS A D.C. PROGRAMMING PROBLEM

A fuel is the mixture of several components obtained after refining, (e.g. Isomat,
Alku!at, Reformat, etc.). Each component is characterized by a number of parame-
ters, (e.g. volume mass, steam pressure, etc.). A commercialized fuel (e.g. Summer
Super or Winter Super,...) must satisfy certain specified conditions which set the
bounds on its characteristics. The problem is to fabricate a cheapest fuel mixture
satisfying the required conditions.

Many researches have been done in order to establish the law of mixture, i.e.
the determination of a characteristic of a mixture as a function of those of its
components. In the additive model widely used in practice, every characteristic of
the fuel depends linearly upon the characteristics of the components. Namely, if
xj (j = 1 , . . . , n) is the fraction of component j and aj its characteristic then the
characteristic of the mixture is determined by the formula

y = alXl + a 2 x 2 + " ' ' + anxn (17)

96 THAI QUYNH PHONG ET AL.

The fuel mixture problem is formulated as a linear programming problem. Unfor-
tunately, the solutions obtained in this model are quite often unsatisfactory.

More recent researches have led to another model with takes into account the
(first order) interactions between each pair of components. Numerous experiments
have been carried out in order to determine the quadratic interaction coefficient aij
between components i and j . The characteristic of the mixture is then computed
as follows

n n

y = ~ ajxj + ~ aijxixj.
j = l i,j=l,i<j

(18)

This model is more adequate than the additive model. The price to be paid, however,
is that the fuel mixture problem becomes a nonconvex optimization problem with
quadratic constraints.

Note that, by definition, xj >_ 0 and ~ j xj = 1. Other constraints may be either
linear or quadratic.

- Linear constraints are due to the bounds which are imposed on the volume of
certain components and to the fact that for certain characteristics, the additive
model (17) can still be used. Summarizing all these linear constrains, we can
write

A x < b
where A is a (r • n)-matrix and b C ~ .

- Quadratic constraints occur to take account of the interactions between com-
ponents. These constraints have the form

n n

a <_ ~ ajxj + ~ a~jxixj <_ ft.
j = l i,j=l,i<j

and so can be written as
1/2(Aix,x) + (bi, z) + di _< O, i = 1 , . . . , s

where Ai, i = 1 , . . . , s are (n • n)-symmetric matrices, bi E ~n and di E R.
Thus, mathematically, the problem of the cheapest fuel mixture can be formulated
as

(F M)
min(c, x),
~j~=l xi = l, zj >_ O,
f (x) = + x) + < 0 (i = 1 , . . . , s)

(C --= (r � 9 On) is t he cost vector).
Since quadratic functions are d.c. functions, problem (FM) is a (DCP). However

to be able to apply the above developed methods to solve this problem, we need
an explicit representation of the quadratic functions fi(x)(i = 1 , . . . , s) as d.c.
functions. The following proposition, firstly established in [30], may be useful in
other contexts.

D.C. PROGRAMMING PROBLEM 97

PROPOSITION 1. Any system of quadratic constraints

1
f i (x) = ~(Aix, x) + (bi, x) + di < O (i = l , . . . , s) (19)

where Ai, i = 1 , . . . , s are symmetric matrices, bi E ~n di E •, is equivalent to
a single d.c. constraint

1
p (x) - ~ (x , x) < 0

where p(x) is a convex function and A is a constant such that A >_ max{p(Ai) :
i = 1 , . . . , s}, p(Ai) being the spectral radius of Ai.

Proof We can write f i (x) as

f i (x) = ((Ai + M) x , x) + (bi, x) + di - -~(x, x) = pi(x) - ~(x , x) (20)

where

)~ > max{p(Ai) : i = 1 , . . . , s } ,

and p(Ai) is the spectral radius of Ai. It is obvious that Ai +)~I, i = 1 , . . . , s, are
positive semi-definite so all pi(x) are convex. Then

f (x) = max f i (x) = max p i (x) - ~ (x , x)
i=l,. . . ,s i=l,. . . ,s

and (19) is reduced to the constraint

),
p (x) - ~ (x , x) __ 0

where p(x) = max{pi(x), i = 1 , . . . , s} and A/2(x, x) are convex functions.
Note that i fp(Ai) , i = 1 , . . . , s, are not available, we can take

A _> max{l I Ai II1: i = 1 , . . . , s }

where for any matrix M = (Mij):11 M II1= max{E~% I M~j I: J = 1,. . . , n}.
Thus, finally, problem (FM) can be rewritten as

min(c, x),

(FM') Ejn=_l xj -- 1, xj > O,
Ax < b,
p(~)- ~(x,x> <_ o.

This is a problem (DCP) where D is a polytope. Therefore ALG 2 can be applied
to solve it.

98 THAI QUYNH PHONG ET AL.

5.2. IMPLEMENTATION ISSUES

The equality constraint ~j~=l xj = 1 could be used to eliminate one variable and
thus, to transform the problem into one of n - 1 variables as was done in [30].
However, it may be more convenient to proceed directly as follows.

Let

n

A = { x : y ~ x j = 1,xj >_0, j = 1 , . . . , n}
j = l

(an (n - 1)-simplex containing D). As the initial polyhedron, take

So = {(x, t)) : x e zx, (yo, x - ,,) + p(v) - t < o}

where v = (l / n , . . . , l /n) and yO E Op(v). Then every subsequent polyhedron
Sk will be defined by a system of linear inequalities, plus the linear equation

n ~ j = l Xj • 1.

For the impliementation of ALG 2, some modifications should be take in the
calculation of vertex sets in order to deal with this kind of polyhedral sets. We
discuss below a modification of Horst-Thoai-Vrie's method [17] which seems to
be well suited to our application. The idea of the method is borrowed from the
algorithm for solving general linear programs by Pham Dinh Tao [28].

Consider a polytope defined by the following system of linear equations and
inequalities

K = {x E]R n : Ax = a ,Bx <_ b}

where A is an (r a x n) matrix of rang ra and B is a (p • n) matrix. Suppose that
the vertex set V(K) of K is known, we want to compute the vertex set V(K') of
K ~ defined by:

K' = {x E K : (~, x) + /3 _ 0) .

Let

H = {x : (a ,x) +/3 = 0}, (21)

V+(K) = {v E V(K) : (a, x) +/3 > 0}, (22)

V - (K) = {v E V (K) : (c~,x)+/3 < 0}. (23)

It is obvious that V (K t) = V - (K) U V(S) where S = K N H. All available
methods for determining V(S) via the knowledge of V(K) are based on the
following characterization (cf. Falk-Hoffman [6]):

LEMMA 2. w E V(S) if and only if w is either a vertex of K lying in H or a point
where an edge [u, v] of K, u E V - (K) , v E V + (K) intersects H.

D.C. PROGRAMMING PROBLEM 99

For very small problems with] V (K) I_< 100, the straightforward method of
Thieu-Tam-Ban [32] can be used. But for] V (K) 1> 100 the following method
of Horst-Thoai-Vries [17] (see also [30]) is superior: Let [V I= min{I V + (K) I,
] V - (K) 1), For each u �9 V denote by E(u) the set of hairlines emanating from
u, each contains an edge of K. It suggests to compute for each e E E(u) the
intersection w of e with the hyperplane H and to check whether w �9 K or w ~ K.
In [17] this was done by performing pivot operations in a simplex tableau involving
slack variables. Thus we have to handle (n + 1) • (2n + 2)-matrices.

Following [28], rather than represent a vertex u by a simplex tableau, we will
represent it as a solution of the linear system

Ax = a, (~)

Brx = bI, (25)

such that

BI , x < bi,, (26)

where I C { 1 , . . . , p}, I I]= n - ra and the rows of A and B1 are linearly
independent. I * is the complement of I in { 1, . . . , m}. Assuming nondegeneracy,
it is well-known then there are exactly n - ra halflines emanating from u whose
direction is the solution d (i) of the following linear system

Ax = 0, (27)

Bx(i)x = 0, (28)

Br(i)x = - 1 (29)

where i e { 1 , . . . , I I I} , r (i) �9 I and I(i) = I \ { r (i) } . I f (t~,d(i)) < 0 t h e n the
halfline corresponding to d (i) will intersect H at the point w = u + Ai d(i) where

(a , "

Analogously, if u E V - (K) then the hairline will intersect H if (a, d (i)) > 0. Thus,
we can compute all newly generated vertices by solving linear systems (27)-(29).

It should be noted that the above procedure is valid only if K is bounded.
Although in our case K = Sk is unbounded, it possesses only one infinite direction
along the axis t. Furthermore, every cut has the form

__< o

o r

o,

100 THAI QUYNH PHONG ET AL.

and K ' = Sk+l has the same direction as K. Also, w E V(S) if and only if w
is either a vertex of K lying in H or the intersection point of an edge (possible
infinite) of K, emanating from a vertex u E V + (K), with the hyperplane H. Thus,
to carry out the calculation of the vertex set V(K ') it suffices to take V = V + (K) .

Another efficient algorithm for the on-line vertex enumeration problem has
been proposed by Chen-Hansen-Jaumard [4] based on exploiting adjacency lists
between vertices. Note that degeneracy does not occur frequently within cutting
plane algorithms. However, degeneracy can be handled as in [4], i.e., by checking
whether a vertex of K is on H and giving a small perturbation to/3 if it is the case.
For the question of detecting redundant constraints see discussions in [17], [14].

5.3. FINDING A BETTER SOLUTION

In actual practice even the computational cost of obtaining an (~, ~)-solution might
be so high that one should be content with one reasonably good solution. For
instance, sometimes a feasible solution may be available at the beginning, and
one may wish to compute a feasible solution with the price reduced by a certain
percentage. Our approach will allow to obtain easily such a solution if it exists.
Specifically, if x* is the given feasible solution with the price (c, x*) and we wish
to reduce the price by 0% (0 is some prescribed positive number), then the problem
is to solve the system

(P*)

(c, x) < a*,
~'~jn=. 1 Xj = 1, xj >_ O,
Ax ~_ b,
f i (x) - �89 +(hi, x) + di < 0 (i = 1 , . . . , s) ,

where a* = (1 - 0/100) (c, x*). This problem can be solved by the above method.

5.4. NUMERICAL RESULTS

Algorithms ALG 1, ALG 2 were programmed in PASCAL under UNIX system. An
illustrative example for solving (DCP) will be given in the Appendix. We present
here some numerical solutions to problem (FM).

EXAMPLE. n = 6, r = 8, m = 3

1. cost vector c: 1.4 1.6 1.4 1.6 1.0 1.0

2. linear constraints: Ax < b

D.C. PROGRAMMING PROBLEM 101

-1271 -263 -439 -37 -44 -50 -500

1271 263 439 37 44 50 860

-630 -824 -789 -866 -586 -804 -730

630 824 789 866 586 804 730

-100 -5 -35 30 -130 15 -10

100 5 35 -30 130 -15 10

-105 -16 -35 10 -100 -1 -40

105 16 35 -10 100 1 70

3. quadratic constraints: 1 (Aix, x) + (bi, x) + di < 0

0 1 1 13 0 2 -81.9

1 0 -1 1 1 1 -90.4

1 -1 0 6 13 1 -88.4

13 1 6 0 33 7 -99.8

0 1 13 33 0 1 -91.0

2 1 1 7 1 0 -78.4 dl = 85.0

0 -1 -1 -13 0 -2 81.9

-1 0 1 -1 -1 -1 90.4

-1 1 0 -6 -13 -1 88.4

-13 -1 -6 0 -33 -7 99.8

0 -1 -13 -33 0 -1 91.0

-2 -1 -1 -7 -1 0 78.4

0 -3 2 0 -9 4 84.6

-3 0 0 4 -12 -2 -101.9

2 0 0 3 -7 -1 -98.6

0 4 3 0 17 3 -110.7

-9 -12 -7 17 0 -8 -93.0

4 -2 -1 3 -8 0 -88.2

d2 = 95.0

d 3 = 9 5 . 4

With e = 0.0001, ~ -- 0.001, the algorithm terminates after 30 iterations and 6.1
seconds (on SUN SPARC station). The optimal solution is

x ~ = (0.151352, 0.000000, 0.682859, -0.000000, 0.072080, 0.093709)

1 0 2 THAI QUYNH PHONG ET AL.

TABLE I. Numerical results for the fuel mixture problem

n e ~ ITER CUT VER TIME
7 0.001 0.001 17 8 156 1.0
7 14 4 44 0.6
7 - 22 12 248 3.2
8 26 16 1078 26.4
8 19 9 224 4.3
8 - 19 9 221 2.1
9 - 33 23 3671 284.8
9 16 6 156 2.2
9 21 11 476 8.5

11 0.01 0.01 21 14 3275 108.8
11 22 15 4 3 2 3 168.3
12 0.05 0.01 23 18 8 8 9 6 489.8
12 21 16 6 0 8 9 286.5
13 - 20 15 4592 163.4
13 22 17 7104 504.7

with function value c* = 1.333684. The maximal number of generated vertices is
225. Suppose given a fixed function value 6 = 1.35. After 3 iterations the algorithm
finds a solution

x --- (0.151374, 0.000000, 0.682788, -0 .000000 , 0.072086, 0.093751)

with the objective function value 1.333665 which is less than ~ by 1.21%. But
there is no solution achieving an objective function value less than ~ by 1.22%. The
algori thm has been run for several problems of different size, generated from the
real-word data. The computational results are given in Table I: "n" is the number
of components , " ITER" the number of iterations, "CUT" the number of cutting
plans, "VER" the maximal number of generated vertices to be stored and "TIME"
the CPU-time in the seconds (on SPARC station).

It is worth noting that in practice the number of components of a fuel mixture
is not very large. The computational results given above show that the algorithm
is quite efficient for solving the fuel mixture problem.

Acknowledgement

The authors would like to thank the referees for their insightful comments and
suggestions. They are grateful to Prof. Hoang Tuy for his valuable suggestions
and corrections which have substantially improved the presentation of the revised
paper.

D.C. PROGRAMMING PROBLEM 103

Appendix

We illustrate ALG 1 by the following example:

m i n - 2 x l + x2,

s.t. x21 + --- 1, xl-z2<_O.
Setting c = (- 2 , 1) and

h(x) = d +

p(x) = x, ,
q(x) = x 2,

the problem becomes

min{(c ,x) s.t. h(x) <_ 0, p (x) - q (x) <_ 0},

where D = {x : h(x) <_ 0} is included in the simplex

T --- { (X l , X 2) : x 1 > - 1 , x 2 > - 1 , X l + X 2 _~ 4}.

Initialization: We start with So = {(x, t) : x E T, Xl - t _< 0} which has 3 vertices

v 1 = (- 1 , - 1 , - 1) , v 2 = (3 , - 1 , 3) , v 2 = (- 1 , 3 , - 1) .

Solving the linear programs yields a lower bound 70 = - 7 and an upper bound
/3 = 5. We take e = 0.0001, ~ = 0.001.
Iteration O: We obtain ao = - 1. We compute the set

Wo -- ((- 1 , - 1 , - 1) , (0 , - 1 , 0) , (1 , 1 ,1))

and by solving m i n { F (x) : x E Wo} we obtain (x~ = (0 , - 1 , 0) . Since
h(x ~ = p(x ~ - to = 0 we have/31 ---- - - 1 , 7 1 -= - 7 , x ~ = xo and S1 = SO.
Iteration 1: We compute a l = --4. The set W1 = 0 so we set/32 = - 1 , 7 2 =
- 4 , $2 = S1.
Iteration 2: We obtain ~2 = -2 .5 . We compute the set

W2 -- { (- 1 , - 1 , - 1) , (0 .75 , -1 ,0 .75) , (1.5,0.5, 1.5)}

and by solving m i n { F (x) : x E W2} we obtain (x 2, t2) = (0.75, - 1.075). Since
x 2 r D we compute the projection of x 2 on D and obtain z 2 = (0.6, - 0 . 8) with
p(z 2) - q(z 2) = - 0 . 0 4 < ~. Therefore/33 = - 1 , 7 3 = - - 2 . 5 . W e construct a new
polytope $3 = $2 n {(x, t) : 1.2xl - 1.6x2 + 2 _< 0} which has 4 vertices:

v 1 = (- 1 , - 1 , - 1) ,

V 2 = (- 1 , 3 , - 1) ,

v 3 = (0 .333333 , -1 ,0 .333333)

v 4 = (1.857143,0.142857,0.142857).

With e = 0.0001, r/ = 0.001, the algorithm terminates after 26 iterations
at a solution x* = (0 .618002,-0786182) with the objective function value
-2 .022186.

104

References

THAI QUYNH PHONG ET AL.

1. R. Benacer (1986), Contribution & l'dtude des algorithmes de l'optimisation non convexe et non
differentiable. Th~se de doctorat en math. appl., Universit6 J. Fourier, Grenoble, France.

2. M.C. Bohringer and S.E. Jacobsen (1983), Two general algorithms for solving linear programs
with an additional reverse convex constraint. In Lectures Notes in Control andlnform. So, number
59 in Sys. Mod. and Optim., Copenhagen. 1 lth of IFIP Working Conference.

3. J. Chaarani (1989), Etude d'une classe d'algorithmes d'optimisation non convexe. Implementa-
tion et Applications. Th~se de doctorat, Univ. Joseph Fourier, Grenoble, France.

4. EC. Chen, E Hansen, and B. Jaumard (1991), On-line and off-line vertex enumeration by
adjacency lists. Operations Research Letters 10, 403-409.

5. A. Chine (1991), Algorithmes robustes en optimisation non eonvexe. Codes et Simulations
numeriques en grande dimension. Th~se de doctorat, Univ. Joseph Fourier, Grenoble, France.

6. J.E. Falk and K.L. Hoffman (1976), A successive underestimating method for concave program-
ruing problems. Mathematics of Operations Research 1, 251-259.

7. C.A. Floudas and V. Visweswaran (1990), A global optimization algorithm for certain classes of
nonconvex NLPs -I. Theory. Computers and Chemical Engineering 14, 1397, 1990.

8. J. FtilSp (1990), A finite cutting plane method for solving linear programs with an additional
reverse convex constraint. European J. Open. Research 44, 395-409.

9. E Giannessi, L. Jurina, and G. Maier (1979), Optimal excavation profile for a pipeline freely
resting on the sea-floor. Engineering Structures 1, 81-91.

10. R.J. Hillestad (1975), Optimization problems subject to a budget constraint with economies of
scale. Operations Research 23, 1091-1098.

11. R.J. Hillestad and Jacobsen S.E. (1980), Linear programs with an additional reverse convex
constraint. Applied Mathematics and Optimization 6, 257-269.

12. R.J. Hillestad and Jacobsen S.E. (1980), Reverse convex programming. Applied Mathematics
and Optimization 6, 63-78.

13. J.B. Hiriart-Urruty (1985), Generalized differentiability, duality and optimization for problems
dealing with difference of two convex functions. In Lectures Notes in Economics and Mathe-
matical Systems 256, 37-69. Springer-Veflag, Berlin.

14. R. Horst (1988), Deterministic global optimization: Recent advances and new fields of applica-
tion. Naval Res. Log. Quar. 37, 433--471.

15. R. Horst and Thoai N.V. (1988), Branch and bound methods for solving systems of equations
and inequalities. J. of Optimization Theory and Applications 134, 426-430.

16. R. Horst, Thoai N.V., and H. Benson (1991), Concave minimization via conical partitions and
polyhedral outer approximation. Mathematical Programming 50, 259-274.

17. R. Horst, Thoai, N.V., and J. de Vries (1988), On finding new vertices and redudant constraints
in cutting plane algorithms for global optimization. Operations Research Letters 7(2), 85-90.

18. R. Horst, Thoai N.V., and H. Tuy (1987), Outer approximation by polyhedral convex sets.
Operations Research Spektrum 9, 153-159.

19. R. Horst, T.Q. Phong, and N.V. Thoai (1990), On solving general reverse convex programming
problems by a sequence of linear programs and linear searches. Annals of Operations Research
25, 1-18.

20. R. Horst, T.Q. Phong, N.V. Thoai, and J. de Vries (1991), On solving a d.c. programming problem
by a sequence of linear programs. J. of Global Optimization 1, 183-203.

21. R. Horst and H. Tuy (1993), Global Optimization: Deterministic Approaches. Springer-Verlag,
Berlin New York, 2 edition.

22. T.H. Matheis and D.S Rubin (1980), A survey and comparison of methods for finding all vertices
of convex polyhedral sets. Mathematics of Operations Research 5, 167-185.

23. L.D. Muu (1985), Convergent algorithm for solving linear programs with an additional reverse
convex constraint. Kybernetica 21,428-435.

24. N.D. Nghia and N.D. Hieu (1986), A method for solving reverse convex programming problems.
Acta Mathematica Vietnamica 11(2), 241-252.

25. V.H. Nguyen and J.J. Strodiot (1992), Computing a global optimal solution to a design centering
problem. Mathematical Programming 53, 111-123.

